

Big Data at the Large Hadron Collider

Frank Würthwein

Professor of Physics University of California San Diego May 6th, 2015

The Science of the LHC

JELLY BEAN UNIVERSE

Like the jaily beans in this jar, the universe is mostly dark: 95 percent consists of dark matter and dark energy. Only about five percent (the same proportion as the colored jelly beans) of the universe – including the stars, planets and us – is made of familiar atomic matter.

The Universe is a strange place!

~68% of energy is "dark energy" We got no clue what this is.

~27% of "energy" is "dark matter" We have some ideas but no proof of what this is!

All of what we know makes up Only about 5% of the universe.

Mont Blanc

LHCb

Lake Geneva

CMS

ATLAS

ALICE

To study Dark Matter we need to create it in the laboratory

The Large Hadron Collider (LHC)

- 27 km in circumference
- Colliding protons on protons at energies of 7,8,13,14TeV
- 2808 bunches colliding every 25ns with 115 billion protons per bunch

The CMS Experiment

several 10's of Petabytes of data expected per experiment in next Run (2015-2017).

Collaboration between 180 Institutions from 40 countries

"Big bang" in the laboratory

- We gain insight by *colliding particles at the highest energies* possible to measure:
 - Production rates
 - Masses & lifetimes
 - Decay rates
- From this we derive the "spectroscopy" as well as the "dynamics" of elementary particles.
- Progress is made by going to higher energies and brighter beams.

- Analyze the official experiment data (~10PB) to reduce it to custom data (~400TB)
 - bring data we need to UCSD Mayer Hall cluster
 - enough disk space to keep things as long as we felt like it
 - store all our private data at UCSD Mayer Hall as well
 - do analysis of private data at UCSD
- In the next 5 years, data volumes are expected to grow large enough that we need to be more agile.

LHC science in the next 5 years

- Be much more agile !!!
- Cache data temporarily at UCSD for analysis
- Access data via the WAN
 - compute at UCSD on data stored elsewhere
 - compute elsewhere on data stored at UCSD
- Compute at SDSC on data at Mayer Hall
- Need high performance IDI for all of the above

On 4/28 network Progress Last Week shown to support 70Gbps

Progress Last Week

Progress Last Week

- LHC Science generates 10's to 100's of Petabytes of Data within the next 5-10 years
- To be effective, we need to be agile
 - bring data to PB cache at Mayer Hall
 - Compute at SDSC on data in Mayer Hall
 - Compute outside UCSD on data in Mayer Hall
 - Compute in Mayer Hall on data outside UCSD
- To succeed requires national & international collaboration, including strong IDI at UCSD.

Thanks !

